MATH 1830

Unit 1 Limits

1.2 Finding Limits Algebraically/Infinte Limits

Pre-Class:

Introduction

Discuss this graph with your group.

Write down everything you observe.

Be prepared to share with the class.

Graph of f of x equals x-squared divided by x-squared minus 1. Coordinate plane is from -6 to +6 on the x-axis and -5 to 5 on the y-axis. There is an horizontal asymptote at y = 1. There are vertical asymptotes at x=-1 and x=1.

Notes

Find each indicated quantity, if it exists.

  1. $\mathop {\lim }\limits_{x \to 4} \;{x^2} - 5x + 1 =$

    ${4^2} - 5\left( 4 \right) + 1 =$

    $- 3$

  2. $\mathop {\lim }\limits_{x \to - 5} \;2{x^2} + 10x + 7 =$

    $2{\left( { - 5} \right)^2} + 10\left( { - 5} \right) + 7 =$

    $7$

  3. $f\left( x \right) = \;\frac{{3{x^2}\; + 2x - 1}}{{x{\;^2} + 3x + 2}}$

    1. $\underset{x\rightarrow -3}{lim}f(x)=$

      $\underset{x\rightarrow -3}{lim}f(x)=\frac{3{{\left( -3 \right)}^{2}}~+2\left( -3 \right)-1}{\left( -3 \right){{~}^{2}}+3\left( -3 \right)+2}=\frac{20}{2}$

      $10$

    2. $\underset{x\rightarrow -1}{lim}f(x)=$

      $\frac{3{{\left( -1 \right)}^{2}}~+2\left( -1 \right)-1}{\left( -1 \right){{~}^{2}}+3\left( -1 \right)+2}=\frac{0}{0}$

      Indeterminate form. Factor, reduce, try again.

      $\underset{x\rightarrow -1}{lim}f(x)=\underset{x\rightarrow -1}{lim}\frac{\left( 3x-1 \right)\left( x+1 \right)}{\left( x+1 \right)\left( x+2 \right)}=\underset{x\rightarrow -1}{lim}\frac{\left( 3x-1 \right)}{\left( x+2 \right)}=\frac{-4}{1}$

      $-4$

    3. $\mathop {\lim }\limits_{x\; \to \;2} f\left( x \right)$ $=\frac{5}{4}=1.25$
    4. $\mathop {\lim }\limits_{x\; \to \; - 2} f\left( x \right)$ $=\frac{7}{0}\,$ Does not exist
  4. $\mathop {\lim }\limits_{x \to - 5} \;\frac{{x^2\; + 7x + 10}}{{x{\;^2} + 2x -15}}$

    $=\frac{(-5)^2+7(-5)+10}{(-5)^2+2(-5)-15}=\frac{0}{0}$

    Indeterminate form. Factor, reduce, try again.

    $\underset{x\rightarrow -5}{lim}f(x)=\underset{x\rightarrow -5}{lim}\frac{\left( x+5 \right)\left( x+2 \right)}{\left( x+5 \right)\left( x-3 \right)}=\underset{x\rightarrow -5}{lim}\frac{\left( x+2 \right)}{\left( x-3 \right)}=\frac{-3}{-8}$

    $=\frac{3}{8}$

  5. $\mathop {\lim }\limits_{x \to 4} \;\frac{{x^2\; -16}}{{3x{\;^2} -13x +4}}$

    $=\frac{(4)^2-16}{3(4)^2-13(4)+4}=\frac{0}{0}$

    Indeterminate form. Factor, reduce, try again.

    $\underset{x\rightarrow 4}{lim}f(x)=\underset{x\rightarrow 4}{lim}\frac{\left( x+4 \right)\left( x-4 \right)}{\left( 3x-1 \right)\left( x-4 \right)}=\underset{x\rightarrow 4}{lim}\frac{\left( x+4 \right)}{\left( 3x-1 \right)}=\frac{8}{11}$

    $=\frac{8}{11}$

  6. $\underset{x\rightarrow 10}{lim} \frac{{{x^2}\; - 15x + 50}}{{{{\left( {x - 10} \right)}^2}}}$

    $=\frac{0}{0}$

    Indeterminate form. Factor, reduce, try again.

    $\underset{x\rightarrow 10}{lim}\,\frac{\left( x-5 \right)\left( x-10 \right)}{{{\left( x-10 \right)}^{2}}}=\underset{x\rightarrow 10}{lim}\,\frac{\left( x-5 \right)}{\left( x-10 \right)}=\frac{5}{0}$

    The limit does not exist. On inspection of the graph, the limit as x approaches 10 from the left and the limit as x approaches 10 from the right are not equal. There is a vertical asymptote at x=10.

  7. A taxi service charges \$3.00 per mile for the first 10 miles. If the trip is over 10 miles, they charge \$5.00 per mile for every mile. Write a piecewise definition of the charge G(x) for taxi fares of x miles.

    Graph G(x) for $0 < x\; \le 25.$

    Blank Cartesian Graph

    $f(x)= \begin{cases} 3x & 0\leq x\leq 10 \\ 5x & x > 10\\ \end{cases} $

    Find:

    $\underset{x\rightarrow10^-}{lim}G(x)=$ $30$

    $\underset{x\rightarrow10^+}{lim}G(x)=$ $50$

    $\underset{x\rightarrow10}{lim}G(x)=$ Does not exist

    Graph of f(x) on domain (0,25]. f(x)=3x for domain (0,10]. f(x)=5x for domain (10,25]

  8. Identify the horizontal asymptotes of the following rational expression (if the horizontal asymptote exists)

  9. $\underset{x\rightarrow\infty}{lim} \;\frac{{7{x^3}\; - {x^2}\; + 1}}{{5{x^3}\; + 6x\; - 7}} =$

    $\underset{x\rightarrow\infty}{lim} \;\frac{{7{x^3}\;}}{{5{x^3}\;}} = \mathop {\lim }\limits_{x \to \infty } \;\frac{{7\;}}{{5\;}} = \frac{7}{5}$

    Horizontal Asymptote at $y=\frac{7}{5}$

  10. $\underset{x\rightarrow\infty}{lim} \;\frac{{6{x^4}\;-{x^2}\; + 1}}{{2{x^6}\;\; - 8x}} =$

    $\underset{x\rightarrow\infty}{lim} \;\frac{{6{x^4}\;}}{{2{x^6}}} = \underset{x\rightarrow\infty}{lim} \;\frac{{3\;}}{{{x^2}}} = 0$

    Horizontal Asymptote at $y=0$

  11. $\underset{x\rightarrow\infty}{lim} \;\frac{{4{x^5}\;-\;9{x^3} - \;1}}{{5{x^3}\; + 3{x^2}\; - 7}} =$

    $\underset{x\rightarrow\infty}{lim}\;\frac{{4{x^5}\;}}{{5{x^3}\;}} = \underset{x\rightarrow\infty}{lim} \;\frac{{4{x^2}\;}}{{5\;}} = \infty $

    Because the function does not approach a specific y value as x approaches infinity, there is no horizontal asymptote.

    Vertical and Horizontal Asymptotes: A summary

    Find all vertical asymptotes, horizontal asymptotes, and holes of the function, showing all your work:

  12. $f\left( x \right) = \;\frac{{2{x^2}\;\; - \;\;32}}{{{x^2}\; + \;5x\; + \;4}}$

    $f\left( x \right) = \;\frac{{2\left( {x + 4} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x + 1} \right)}}$

    Vertical Asymptote: x=-1

    Hole: x=-4

    Horizontal Asymptote: y=2

  13. $f\left( x \right)\; = \frac{{{x^2}\;\; - \;\;9}}{{{x^2}\;\; - \;\;4}}$

    $f\left( x \right) = \;\frac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}$

    Vertical Asymptote: x=2 and x=-2

    Hole: none

    Horizontal Asymptote: y=1

    Find all vertical asymptotes, horizontal asymptotes, and holes of the function by a quick analysis:

  14. $f\left( x \right)\; = \frac{{x\;\; + 2}}{{{x^2}\; + \;3}}$

    Vertical Asymptote: none

    Hole: none

    Horizontal Asymptote: y=0

  15. $f\left( x \right)\; = \frac{{{x^2}\; - 3x - \;10}}{{{x^2}\; - \;4x - 5}}$

    $f(x) = \frac{{\left( {x - 5} \right)\left( {x + 2} \right)}}{{\left( {x - 5} \right)\left( {x + 1} \right)}}$

    Vertical Asymptote: x=-1

    Hole: x=5

    Horizontal Asymptote: y=1

  16. $f(x) = \frac{{{x^2} + 5x - 14}}{{x - 2}}$

    $=\frac{(x+7)(x-2)}{x-2}$

    Vertical Asymptote: There are no vertical asymptotes.

    Hole: x=2

    Horizontal Asymptote: There are no horizontal asymptotes.

1.2 Finding Limits Algebraically/Infinite Limits

Practice

Compute the limits. If the limit does not exist, explain why.
  1. $\underset{x\rightarrow3}{lim}\,\ \frac{{{x}^{2}}+x-12}{x-3}\ = $

    $\frac{{{3}^{2}}+3-12}{3-3}=\frac{0}{0}$

    Indeterminate form: Factor, reduce, take the limit again.

    $\underset{x\rightarrow3}{lim}\,\ \frac{(x+4)(x-3)}{x-3}$

    $=\underset{x\rightarrow3}{lim}\,\ \left( x+4 \right)$

    $=3+4=$

    $7$

  2. $\underset{x\rightarrow1}{lim}\,\ \frac{{{x}^{2}}+x-12}{x-3}\ = $

    $\frac{{{1}^{2}}+1-12}{1-3}=\frac{-10}{-2}=$

    $5$

  3. $\underset{x\rightarrow10}{lim}\,\ 10 =$

    $10$

  4. $\underset{x\rightarrow4}{lim}\,\ 3{{x}^{2}}-5x = $

    $3{{(4)}^{2}}-5(4)$

    $=3(16)-20$

    $=48-20=$

    $28$

  5. $\underset{x\rightarrow0}{lim}\,\ \frac{4x-5{{x}^{2}}}{x-1} = $

    $\frac{4(0)-5{{(0)}^{2}}}{0-1}=\frac{0}{-1}=$

    $0$

  6. $\underset{x\rightarrow1}{lim}\,\ \frac{{{x}^{2}}-1}{x-1} = $

    $\frac{{{1}^{2}}-1}{1-1}=\frac{0}{0}$

    Indeterminate form: Factor, reduce, take the limit again.

    $\underset{x\rightarrow1}{lim}\frac{\left(x+1\right)\left(x-1\right)}{x-1}$

    $=\,\underset{x\rightarrow1}{lim}\,\left( x+1 \right)$

    $=1+1$

    $2$

  7. $\underset{x\rightarrow0^{+}}{lim}\,\ \frac{\sqrt{2-{{x}^{2}}}}{x} = $

    $\frac{\sqrt{2-{{0}^{2}}}}{0}=$

    $\frac{\sqrt{2}}{0}$ , which is undefined

  8. $\underset{x\rightarrow0^{+}}{lim}\,\ \frac{\sqrt{2-{{x}^{2}}}}{x+1} =$

    $\frac{\sqrt{2-{{0}^{2}}}}{0+1}=\frac{\sqrt{2}}{1}=$

    $\sqrt{2}$

  9. $\underset{x\rightarrow2}{lim}\,\ {{({{x}^{2}}+4)}^{3}} =$

    ${{({{2}^{2}}+4)}^{3}}={{(4+4)}^{3}}={{(8)}^{3}}=$

    $512$

    Problems 1-9 from http://www.whitman.edu/mathematics/california_calculus/calculus.pdf

    Find the vertical and horizontal asymptotes and holes, if they exist.

  10. $f(x)=\frac{2x-7}{x-4}\ $

    VA: $x=4$

    HA: $y=2$

    Holes: There are no holes.

  11. $f(x)=\ \frac{{{x}^{2}}-5}{{{x}^{3}}+{{x}^{2}}+1}\ $

    VA: $x=-1.47$

    HA: $y=0$

    Holes: There are no holes.

  12. $f(x)=\frac{{{x}^{3}}+6{{x}^{2}}+8x}{{{x}^{2}}-16}\ $

    VA: $x=4$

    HA: There are no horizontal asymptotes.

    Holes: $x=-4$

  13. $f(x)=\frac{x-5}{\sqrt{4{{x}^{2}}+8}}\ $

    VA: There are no vertical asymptotes.

    HA: $y=0.5$

    Holes: There are no holes.

  14. $f(x)=\ \frac{{{x}^{2}}-1}{{{x}^{2}}-x-2}$

    VA: $x=2$

    HA: $y=1$

    Holes: $x=-1$

  15. DIRECTV offers the following packages:

    • Select Package: 145 channels (0-145) for \$19.99 per month
    • Choice Package: Add 30 additional channels (146-175) for \$29.99 per month
    1. Write a piecewise definition of the charge G(x) for service with x channels.

    $G(x)=\begin{cases} 19.99 & 0\lt x\leq 145 \\ 29.99 & 145\lt x\leq 175 \\ \end{cases}$​

    1. Graph G(x) for $0<x~\le 175.$

      Piecewise graph of G(x) Horizontal line at y=19.99 on domain (0,145] Horizontal line at y=29.99 on domain (145,175]

    2. Find: $\underset{x\rightarrow145^{-}}{lim}\,G\left( x \right)$ = $19.99$
    3. Find: $\underset{x\rightarrow145^{+}}{lim}\,G\left( x \right)$ = $29.99$
    4. Find: $\underset{x\rightarrow145}{lim}\,G\left( x \right)$ Does Not Exist

    Source: https://www.directv.com/DTVAPP/pepod/configure.jsp?CMP=&keninvocaid=#package-section

Extra Practice for Limits and Asymptotes

Find the limits.

Coordinate Plane:  -10 to 10 on x- and y-axes.  Vertical Asymptotes at x =-4 and x=2.  Three curves graphed on the plane.  Left curve begins at top left of graph, crosses the x-axis at approximately -7.75, continues down until approximately (-6,-4), is horizontal until x=-4.5, then increases very close to the vertical asymptote at x=-4. The middle curve rises from the bottom of the graph along the vertical asymptote at x=-4 until the point (-2,-1).  The curve then decreases until its endpoint at (2,-3).  This endpoint is a solid dot.  The curve on the right third of the graph is decreasing from the top of the coordinate plane along the right side of the vertical asymptote at x=2.  It crosses the x-axis at approximately x=2.25 and continues decreasing.  This curve decreases more slowly (level out) beginning at x=3 to almost a horizontal line at y=-5.

  1. $\underset{x\rightarrow-4^{-}}{lim}\,f(x)=$ $\infty $

  2. $\underset{x\rightarrow-4^{+}}{lim}\,f(x)=$ $-\infty $

  3. $\underset{x\rightarrow-4}{lim}\,f(x)=$ Does Not Exist

  4. $f(-4)=$ undefined

  5. $\underset{x\rightarrow2^{-}}{lim}\,f(x)=$ $-3$

  6. $\underset{x\rightarrow2^{+}}{lim}\,f(x)=$ $\infty $

  7. $\underset{x\rightarrow2}{lim}\,f(x)=$ Does Not Exist

  8. $f(2)=$ $-3$

  9. $\underset{x\rightarrow-5^{-}}{lim}\,f(x)=$ $-4$

  10. $\underset{x\rightarrow-5^{+}}{lim}\,f(x)=$ $\-4 $

  11. $\underset{x\rightarrow-5}{lim}\,f(x)=$ $-4$

  12. $f(-5)=$ $-4$

    Find the limit.

  13. $\underset{x\rightarrow1}{lim}\,\frac{10x}{x-1}=$

    $\frac{10(1)}{1-1}=\frac{10}{0}$

    Does Not Exist

  14. $\underset{x\rightarrow-12}{lim}\,\frac{{{x}^{2}}+11x-12}{x+12}=$

    $\underset{x\rightarrow-12}{lim}\,\frac{(x+12)(x-1)}{(x+12)}=\underset{x\rightarrow-12}{lim}\,(x-1)=$

    $-13$

    Find the vertical and horizontal asymptotes and holes, if they exist.

  15. $f(x)=\frac{9x}{x+7}$

    VA: $x=-7$

    HA: $y=9$

    Holes: There are no holes.

  16. $f(x)=9{{x}^{8}}+7{{x}^{6}}+21$

    VA: There are no vertical asymptotes.

    HA: There are no holes.

    Holes: There are no horizontal asymptotes.

  17. $f(x)=\frac{10{{x}^{2}}+49}{{{x}^{2}}-49}$

    VA: $x=7$ and $x=-7$

    HA: $y=10$

    Holes: There are no holes.

  18. $f(x)=\frac{6x+7}{7{{x}^{2}}+4}$

    VA: There are no vertical asymptotes.

    HA: $y=0$

    Holes: There are no holes.

  19. $f(x)=\frac{2{{x}^{2}}-7x-15}{{{x}^{2}}+3x-40}$

    $f(x)=\frac{(2x+3)(x-5)}{(x+8)(x-5)}$

    VA: $x=-8$

    HA: $y=2$

    Hole: $x=5$


Additional Resources