1.5 Derivatives: The Power Rule
Pre-Class 1.5A:
- Complete 1.4 homework assignment: check and correct.
- Take notes on the videos and readings (use the space below).
- Work and check problems #1-4 in the 1.5 NOTES section.
- Complete the 1.5A Pre-Class Quiz
Pre-Class 1.5B:
- Complete 1.5A Homework assignment: check and correct.
- Take notes on the videos and readings (use the space below).
- 1.5B Work and check problems #9-10 in the 1.5 NOTES section.
- Complete 1.5B Pre-Class Quiz
Notes
Basic Differentiation Properties
Three Equivalent Terms:If $y\; = \;\;f\left( x \right),\;$ you can use any of these to represent the derivative $y' = f'\left( x \right) = \frac{{dy}}{{dx}}$
THE POWER RULE: If $f\left( x \right) = {x^n}$ then $f'\left( x \right) = n{x^{n - 1}}$
Using the Power Rule, find the indicated derivative:
-
$g\left( x \right) = {x^4}$
$g'\left( x \right) = 4{x^3}$
-
$y = 2{x^3}$
$y' = 2\cdot3{x^{ 2}}$
$y' = 6{x^{ 2}}$
-
$\frac{d}{{dx}}\left( 5 \right)$
$\frac{d}{{dx}}\left( 5 \right) = \frac{d}{{dx}}\left( {5{x^0}} \right) = 5\left( 0 \right){x^{ - 1}} =$
$0$
-
$y = \;\frac{1}{{{x^7}}} = {x^{ - 7}}$
$y' = - 7{x^{ - 8}} = \frac{{ - 7}}{{{x^8}}}$
-
$y = \;\frac{{{x^4}}}{{16}}$
$\frac{{dy}}{{dx}} = \frac{{4{x^3}}}{{16}} = \frac{{{x^3}}}{4}$
-
$y\; = 8 + 3t - 5{t^3}$
$\frac{{dy}}{{dt}} = 0 + 3 - 15{t^2} = 3 - 15{t^2}$
-
$g\left( x \right) = 6{x^{ - 5}} - \;\;5{x^{ - 4}}$
$g'\left( x \right) = - 30{x^{ - 6}} + 20{x^{ - 5}} =$
$ \frac{{ - 30}}{{{x^6}}} + \frac{{20}}{{{x^5}}}$
-
$\frac{d}{{dx}}\left( {\frac{{4{x^3}}}{{10}}\; - \;\;\frac{2}{{3{x^4}}}} \right)$
$\frac{d}{{dx}}\left( {\frac{4}{{10}}{x^3} - \frac{2}{3}{x^{ - 4}}} \right)$
$\frac{d}{{dx}} = \frac{{12}}{{10}}{x^2} + \frac{8}{3}{x^{ - 5}} = $
$\frac{{6{x^2}}}{5} + \frac{8}{{3{x^5}}}$
-
$H'\left( w \right)$ if $H\left( w \right) = \;\frac{5}{{{w^6}}}\; - \;\;7\sqrt w$
$H(w)= 5{w^{ - 6}} - 7{w^{1/2}}$
$H'(w) = - 30{w^{ - 7}} - \frac{7}{2}{w^{ - 1/2}} =$
$ \frac{{ - 30}}{{{w^7}}} - \frac{7}{{2\sqrt w }}$
-
$\frac{d}{{du}}\left( {7{u^{2/3}}\;\; + \;\;\;4{u^{ - 3/5}}} \right)$
$\frac{d}{{du}} = \frac{{14}}{3}{u^{ - 1/3}} - \frac{{12}}{5}{u^{ - 8/5}}$
-
Find and approximate the value(s) of$\;x$ where the graph of$\;f\;$has a horizontal tangent line. Use a graphing calculator to verify. $f\left( x \right) = 2{x^2}\; - 5x$
$f'(x) = 4x - 5$
The graph of f has a horizontal tangent where $f'(x) = 0.$
$4x - 5 = 0$
$4x = 5$
$x = \frac{5}{4}$
The graph of $f(x)$ has a horizontal tangent at $x=\frac54.$
-
A company’s total sales (in millions of dollars) t months from now are given by $S\left( t \right) = 0.032{t^4}\;\; + 0.5{t^3}\; + 2.8{t^2}\; + 9t - 4.$
- Find $S'\left( t \right).$
$S'\left( t \right) = 0.128{t^3} + 1.5{t^2} + 5.6t + 9$
- Find $S\left( 4 \right)$ and $S'\left( 4 \right).$ Write a brief verbal interpretation of these results.
$S(4) = 0.032{(4)^4} + 0.5{(4)^3} + 2.8{(4)^2} + 9(4) - 4 = 116.99$
$S'(4) = 0.128{(4)^3} + 1.5{(4)^2} + 5.6(4) + 9 = 63.59$
Total sales after 4 months are \$116.99 million. After 4 months, the sales are increasing at a rate of $63.59 million per month.
- Find $S\left( 8 \right)$ and $S'\left( 8 \right).$ Write a brief verbal interpretation of these results.
$S(8) = 0.032{(8)^4} + 0.5{(8)^3} + 2.8{(8)^2} + 9(8) - 4 = 634.27$
$S'(8) = 0.128{(8)^3} + 1.5{(8)^2} + 5.6(8) + 9 = 215.34$
Total sales after 8 months are \$634.27 million. After 8 months, the sales are increasing at a rate of $215.34 million per month.
- Find $S'\left( t \right).$
-
A company decides to develop a cost equation based on the quantity of the product produced in a day. They collected the following data:
Quantity 20 35 50 65 80 95 110 Cost 642.35 766.48 858.82 928.83 1005.32 1078.82 1140.79 - Enter the data in a graphing calculator and find a cubic regression equation for the data.
Let $x$ represent the quantity produced in a day.
Let $y$ represent the daily cost for production.
$F(x) = y = 0.000326{x^3} - 0.084298{x^2} + 11.710778x + 441.4657$
- If $F\left( x \right)$ denotes the regression equation found in part A, find $F\left( {70} \right)$ and $F'\left(
{70} \right).$
$F'(x) = 0.0009777{x^2} - 0.168596x + 11.71$
$F(70) = 959.9$
$F'(70) = 4.699$
- Write a brief verbal interpretation of these results.
The total cost to produce 70 items is \$959.90. At a production rate of 70 items per day, the cost is increasing by $4.70 for the next item.
- Enter the data in a graphing calculator and find a cubic regression equation for the data.