MATH 1830

Unit 1 Limits

1.5 Derivatives: The Power Rule

Pre-Class 1.5A:

Pre-Class 1.5B:

Notes

Basic Differentiation Properties

Three Equivalent Terms:

If $y\; = \;\;f\left( x \right),\;$ you can use any of these to represent the derivative $y' = f'\left( x \right) = \frac{{dy}}{{dx}}$

THE POWER RULE: If $f\left( x \right) = {x^n}$ then $f'\left( x \right) = n{x^{n - 1}}$

Using the Power Rule, find the indicated derivative:

  1. $g\left( x \right) = {x^4}$

    $g'\left( x \right) = 4{x^3}$

  2. $y = 2{x^3}$

    $y' = 2\cdot3{x^{ 2}}$

    $y' = 6{x^{ 2}}$

  3. $\frac{d}{{dx}}\left( 5 \right)$

    $\frac{d}{{dx}}\left( 5 \right) = \frac{d}{{dx}}\left( {5{x^0}} \right) = 5\left( 0 \right){x^{ - 1}} =$

    $0$

  4. $y = \;\frac{1}{{{x^7}}} = {x^{ - 7}}$

    $y' = - 7{x^{ - 8}} = \frac{{ - 7}}{{{x^8}}}$

  5. $y = \;\frac{{{x^4}}}{{16}}$

    $\frac{{dy}}{{dx}} = \frac{{4{x^3}}}{{16}} = \frac{{{x^3}}}{4}$

  6. $y\; = 8 + 3t - 5{t^3}$

    $\frac{{dy}}{{dt}} = 0 + 3 - 15{t^2} = 3 - 15{t^2}$

  7. $g\left( x \right) = 6{x^{ - 5}} - \;\;5{x^{ - 4}}$

    $g'\left( x \right) = - 30{x^{ - 6}} + 20{x^{ - 5}} =$

    $ \frac{{ - 30}}{{{x^6}}} + \frac{{20}}{{{x^5}}}$

  8. $\frac{d}{{dx}}\left( {\frac{{4{x^3}}}{{10}}\; - \;\;\frac{2}{{3{x^4}}}} \right)$

    $\frac{d}{{dx}}\left( {\frac{4}{{10}}{x^3} - \frac{2}{3}{x^{ - 4}}} \right)$

    $\frac{d}{{dx}} = \frac{{12}}{{10}}{x^2} + \frac{8}{3}{x^{ - 5}} = $

    $\frac{{6{x^2}}}{5} + \frac{8}{{3{x^5}}}$

  9. $H'\left( w \right)$ if $H\left( w \right) = \;\frac{5}{{{w^6}}}\; - \;\;7\sqrt w$

    $H(w)= 5{w^{ - 6}} - 7{w^{1/2}}$

    $H'(w) = - 30{w^{ - 7}} - \frac{7}{2}{w^{ - 1/2}} =$

    $ \frac{{ - 30}}{{{w^7}}} - \frac{7}{{2\sqrt w }}$

  10. $\frac{d}{{du}}\left( {7{u^{2/3}}\;\; + \;\;\;4{u^{ - 3/5}}} \right)$

    $\frac{d}{{du}} = \frac{{14}}{3}{u^{ - 1/3}} - \frac{{12}}{5}{u^{ - 8/5}}$

  11. Find and approximate the value(s) of$\;x$ where the graph of$\;f\;$has a horizontal tangent line. Use a graphing calculator to verify. $f\left( x \right) = 2{x^2}\; - 5x$

    $f'(x) = 4x - 5$

    The graph of f has a horizontal tangent where $f'(x) = 0.$

    $4x - 5 = 0$

    $4x = 5$

    $x = \frac{5}{4}$

    The graph of $f(x)$ has a horizontal tangent at $x=\frac54.$

  12. A company’s total sales (in millions of dollars) t months from now are given by $S\left( t \right) = 0.032{t^4}\;\; + 0.5{t^3}\; + 2.8{t^2}\; + 9t - 4.$

    1. Find $S'\left( t \right).$

      $S'\left( t \right) = 0.128{t^3} + 1.5{t^2} + 5.6t + 9$

    2. Find $S\left( 4 \right)$ and $S'\left( 4 \right).$ Write a brief verbal interpretation of these results.

      $S(4) = 0.032{(4)^4} + 0.5{(4)^3} + 2.8{(4)^2} + 9(4) - 4 = 116.99$

      $S'(4) = 0.128{(4)^3} + 1.5{(4)^2} + 5.6(4) + 9 = 63.59$

      Total sales after 4 months are \$116.99 million. After 4 months, the sales are increasing at a rate of $63.59 million per month.

    3. Find $S\left( 8 \right)$ and $S'\left( 8 \right).$ Write a brief verbal interpretation of these results.

      $S(8) = 0.032{(8)^4} + 0.5{(8)^3} + 2.8{(8)^2} + 9(8) - 4 = 634.27$

      $S'(8) = 0.128{(8)^3} + 1.5{(8)^2} + 5.6(8) + 9 = 215.34$

      Total sales after 8 months are \$634.27 million. After 8 months, the sales are increasing at a rate of $215.34 million per month.

  13. A company decides to develop a cost equation based on the quantity of the product produced in a day. They collected the following data:

    Quantity 20 35 50 65 80 95 110
    Cost 642.35 766.48 858.82 928.83 1005.32 1078.82 1140.79
    1. Enter the data in a graphing calculator and find a cubic regression equation for the data.

      Let $x$ represent the quantity produced in a day.

      Let $y$ represent the daily cost for production.

      $F(x) = y = 0.000326{x^3} - 0.084298{x^2} + 11.710778x + 441.4657$

    2. If $F\left( x \right)$ denotes the regression equation found in part A, find $F\left( {70} \right)$ and $F'\left( {70} \right).$

      $F'(x) = 0.0009777{x^2} - 0.168596x + 11.71$

      $F(70) = 959.9$

      $F'(70) = 4.699$

    3. Write a brief verbal interpretation of these results.

      The total cost to produce 70 items is \$959.90. At a production rate of 70 items per day, the cost is increasing by $4.70 for the next item.

1.5A Derivatives: The Power Rule

Practice

Determine the derivative of each of the following functions. State your answer using full and proper notation, labeling the derivative with its name. For example, if you are given a function $h(z),$ you should write $h'(z)\ $or $\frac{dh}{dz}$ as part of your response.

  1. $f(x)={{x}^{7}}$

    ${f}'(x)=7{{x}^{6}}$

  2. $h(z)=\pi $

    ${h}'(z)=0$

  3. $y=\frac{1}{{{x}^{9}}}$

    $y=x^{-9}$

    ${y}'=-9{{x}^{-10}}=\frac{-9}{{{x}^{10}}}$

  4. $\frac{d}{dx}\left( \frac{{{x}^{6}}}{36} \right)$

    $\frac{d}{dx}=\frac{6{{x}^{5}}}{36}=\frac{{{x}^{5}}}{6}$

  5. $p(a)=3{{a}^{4}}-2{{a}^{3}}+7{{a}^{2}}-a+12$

    ${p}'(a)=12{{a}^{3}}-6{{a}^{2}}+14a-1$

  6. $\frac{d}{dx}\left( -5{{x}^{4}}-6{{x}^{2}}-\frac{2}{{{x}^{3}}} \right)$

    $\frac{d}{dx}(-5{{x}^{4}}-6{{x}^{2}}-2{{x}^{-3}})$

    $\frac{d}{dx}=-20{{x}^{3}}-12x+6{{x}^{-4}}$

    $\frac{d}{dx}=-20{{x}^{3}}-12x+\frac{6}{{{x}^{4}}}$

  7. $q(x)=\frac{{{x}^{3}}-x+2}{x}$

    $q(x)=\frac{x^3}{x}-\frac{x}{x}+\frac{2}{x}$

    $q(x)=x^2-1+2{x^{-1}}$

    ${q}'(x)=2x-2{{x}^{-2}}$

    ${q}'(x)=2x-\frac{2}{{{x}^{2}}}$

  8. $f(x)=\frac{2{{x}^{5}}-3{{x}^{3}}+x}{{{x}^{2}}}$

    $f(x)=\frac{2{{x}^{5}}}{{x}^{2}}-\frac{3{{x}^{3}}}{{x}^{2}}+\frac{x}{{{x}^{2}}}$

    $f(x)=2{{x}^{3}}-3x+\frac{1}{x}$

    $f(x)=2{{x}^{3}}-3x+{{x}^{-1}}$

    ${f}'(x)=6{{x}^{2}}-3-1{{x}^{-2}}$

    ${f}'(x)=6{{x}^{2}}-3-\frac{1}{{{x}^{2}}}$

  9. Find the slope of the tangent line to the curve $p(x)=3{{x}^{4}}-2{{x}^{3}}+7{{x}^{2}}-x+12$ at the point where $x=-1$.

    ${p}'(x)=12{{x}^{3}}-6{{x}^{2}}+14x-1$

    ${m_{\tan }}={p}'\left( -1 \right)=12{{(-1)}^{3}}-6{{(-1)}^{2}}+14(-1)-1=-33$

    At $x=-1, {m_{\tan }}=-33$

  10. Find the equation of the tangent line at $x=-1$ for the function $p(x)$ in problem 9.

    $(-1,25)$

    $y-25=-33(x+1)$

    $y-25=-33x-33$

    $y=-33x-8$

    Active Calculus by Matthew Boelkins is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at http://scholarworks.gvsu.edu/books/10/.

1.5B Derivatives: The Power Rule

Practice

Determine the derivative of each of the following functions. State your answer using full and proper notation, labeling the derivative with its name. For example, if you are given a function $h(z),$ you should write $h'(z)\ $or $\frac{dh}{dz}$ as part of your response.
  1. $f(x)=\sqrt[7]{{{x}^{4}}}$$={x}^{4/7}$

    ${f}'(x)=\frac{4}{7}{{x}^{-3/7}}=\frac{4}{7\sqrt[7]{{{x}^{3}}}}$

  2. $h(z)=\frac{5}{\sqrt{x}}$$=5{x}^{-1/2}$

    ${h}'(x)=\frac{-5}{2}{{x}^{-3/2}}=\frac{-5}{2\sqrt{{{x}^{3}}}}$

    ${h}'(x)=\frac{-5}{2x\sqrt{x}}$

  3. $y=\frac{{{x}^{6}}}{12}-3\,\sqrt[3]{x}$

    $y=\frac{{{x}^{6}}}{12}-3{{x}^{1/3}}$

    ${y}'=\frac{6{{x}^{5}}}{12}-3(\frac{1}{3}){{x}^{-2/3}}$

    ${y}'=\frac{{{x}^{5}}}{2}-{{x}^{-2/3}}$

  4. $\frac{d}{dx}\left( -\frac{1}{{{x}^{4}}}\ +\ 9{{x}^{5}} \right)$

    $\frac{d}{dx}(-{{x}^{-4}}+9{{x}^{5}})$

    $\frac{d}{dx}=4{{x}^{-5}}+45{{x}^{4}}$

    $\frac{d}{dx}=\frac{4}{{{x}^{5}}}+45{{x}^{4}}$

  5. $p(a)=-3{{a}^{-5}}+{{a}^{-3}}+7a-\sqrt{a}+12$

    $p(a)=-3{{a}^{-5}}+{{a}^{-3}}+7a-{{a}^{1/2}}+12$

    ${p}'(a)=15{{a}^{-6}}-3{{a}^{-4}}+7-\frac{1}{2}{{a}^{-1/2}}$

    ${p}'(a)=\frac{15}{{{a}^{6}}}-\frac{3}{{{a}^{4}}}+7-\frac{1}{2\sqrt{a}}$

  6. $\frac{d}{dx}\left( -5\sqrt[4]{{{x}^{3}}}-6\sqrt[3]{{{x}^{2}}}-\frac{2}{{{x}^{3}}} \right)$

    $\frac{d}{dx}\left( -5{{x}^{3/4}}-6{{x}^{2/3}}-2{{x}^{-3}} \right)$

    $\frac{d}{dx}=-5(\frac{3}{4}){{x}^{-1/4}}-6(\frac{2}{3}){{x}^{-1/3}}+6{{x}^{-4}}$

    $\frac{d}{dx}=\frac{-15}{4}{{x}^{-1/4}}-4{{x}^{-1/3}}+6{{x}^{-4}}$

    $\frac{d}{dx}=\frac{-15}{4\sqrt[4]{x}}-\frac{4}{\sqrt[3]{x}}+\frac{6}{{{x}^{4}}}$

  7. $q(x)=\frac{-8{{x}^{3}}+5x-6}{{{x}^{4}}}$

    $q(x)=-8{{x}^{-1}}+5{{x}^{-3}}-6{{x}^{-4}}$

    ${q}'(x)=8{{x}^{-2}}-15{{x}^{-4}}+24{{x}^{-5}}$

    ${q}'(x)=\frac{8}{{{x}^{2}}}-\frac{15}{{{x}^{4}}}+\frac{24}{{{x}^{5}}}$

  8. Find the equation of the tangent line to the graph of $g(x)=-\frac{5}{\sqrt{x}}$ at the point $x=4$.

    $g(4)=\frac{-5}{\sqrt4}$

    $g(4)=\frac{-5}2$

    Use point $(4,\frac{-5}2)$

    $g(x)=-5x^{-1/2}$

    ${g}'\left( x \right)=\frac{5}{2}{{x}^{-3/2}}$

    ${m_{\tan }}={g}'\left( 4 \right)=\frac{5}{2}{{\left( 4 \right)}^{-3/2}}=\frac{5}{16}$

    $y+\frac{5}{2}=\frac{5}{16}\left( x-4 \right)$

    $y+\frac{5}{2}=\frac{5}{16}x-\frac54$

    $y=\frac{5}{16}x-\frac{15}{4}$

  9. The population of a bacteria colony is modeled by the function $p(t)=200+20t-{{t}^{2}}$, where t is time in hours, $t\ge 0$, and p is the number of bacteria, in thousands.

    ${p}'(t)=20-2t$

    1. Determine the growth rate of the bacteria population at each of the following times.
      1. 3 hours

        ${p}'(3)=20-2(3)=20-6=14$

        At 3 hours, the bacteria population is increasing at a rate of 14 thousand bacteria per hour.

      2. 8 hours

        ${p}'(8)=20-2(8)=20-16=4$

        At 8 hours, the bacteria population is increasing at a rate of 4 thousand bacteria per hour.

      3. 13 hours

        ${p}'(13)=20-2(13)=20-26=-6$

        At 13 hours, the bacteria population is decreasing at a rate of 6 thousand bacteria per hour.

      4. 18 hours

        ${p}'(18)=20-2(18)=20-36=-16$

        At 18 hours, the bacteria population is decreasing at a rate of 16 thousand bacteria per hour.

    2. What are the implications of the growth rates in part a?

      As time increases, growth rate slows and eventually the bacteria start to die.

    3. Determine the equation of the tangent to p(t) at the point t=8.

      $(8,296)$

      ${m_{\tan }}=4$ from problem a part ii above

      $y-296=4(x-8)$

      $y-296=4x-32$

      $y=4x+264$

    1. When does the bacteria population stop growing? What is the population at this time?

      The population stops growing when ${p}'(t)=0$

      $20-2t=0$

      $10=t$

      The population stops growing at 10 hours.

Additional Resources