MATH 1830

Unit 2 Derivatives

2.4 Derivatives of Quotients

Pre-Class:

Introduction

  1. The cost of manufacturing x MP3 players per day is represented by the function $$C(x) = 0.01{x^2} + 42x + 300\quad 0 \le x \le 300.$$

    1. Determine the average cost function.

      $\bar C(x) = \frac{{0.01{x^2} + 42x + 300}}{x}$

    2. Determine the marginal average cost function. What did you have to do to the average cost function in order to find the marginal average cost function?

      The marginal average cost is the derivative of the average cost.

      Must rewrite the function to use the power rule.

      $\bar C(x) = 0.01x + 42 + \frac{{300}}{x}$

      $\bar C(x) = 0.01x + 42 + 300{x^{ - 1}}$

      $\bar C'(x) = 0.01 - 300{x^{ - 2}}$

      $\bar C'(x) = 0.01 - \frac{{300}}{{{x^2}}}$

  2. Suppose the function $V(t) = \frac{{50,000 + 6t}}{{1 + 0.4t}}$ represents the value, in dollars, of a new car t years after it is purchased. Determine the rate of change in the value of the car.

    We cannot rewrite $V(t)$ to use the power rule as we did for the question above. We need another new rule.


Notes

Derivatives of Quotients

Rewriting a Function as a Quotient

    The Quotient Rule

    If $y = \;\frac{f(x)}{g(x)},$

    then $y' = \;\frac{{f'(x)\;g(x)\; - \;f(x)\;g'(x)\;}}{{[{g(x)}}]^2}.$

    Two Methods for Finding the Derivative:

    Find the derivative two different ways.

    1. Simplify first and use the power rule.
    2. Use the quotient rule.


  1. $r\left( x \right) = \;\frac{{{x^5}+4}}{{{x^2}}}$

    1. Simplifying and Using Power Rule

      $r(x) = \frac{{{x^5}}}{{{x^2}}} + \frac{4}{{{x^2}}}$

      $r(x) = {x^3} + 4{x^{ - 2}}$

      ${r'}(x) = 3{x^2} - 8{x^{ - 3}}$

      ${r'}(x) = 3{x^2} - \frac{8}{{{x^3}}}$

    2. Using Quotient Rule

      $f = {x^5} + 4$

      $f' = 5{x^4}$

      $g = {x^2}$

      $g' = 2x$

      $r'(x) = \frac{{5{x^4}({x^2}) - 2x({x^5} + 4)}}{{({x^2})^2}}$

      $r'(x) = \frac{{5{x^6} - 2{x^6} - 8x}}{{{x^4}}}$

      $r'(x) = \frac{{3{x^6} - 8x}}{{{x^4}}}$

      $r'(x) = \frac{{x(3{x^5} - 8)}}{{{x^4}}}$

      $r'(x) = \frac{{3{x^5} - 8}}{{{x^3}}}$

      $r'(x) = 3{x^2} - \frac{8}{{{x^3}}}$ (which is the same answer as part a)

    Find the Derivative of each Function using the Quotient Rule.

  2. $b\left( x \right) = \;\frac{{4x}}{{3x + 8}}$

    $f =4x$

    $f' =4$

    $g =3x+8$

    $g' = 3$

    $b'(x) = \frac{{4(3x + 8) - 3(4x)}}{{{{\left( {3x + 8} \right)}^2}}}$

    $b'(x) = \frac{{12x + 32 - 12x}}{{{{\left( {3x + 8} \right)}^2}}}$

    $b'(x) = \frac{{32}}{{{{\left( {3x + 8} \right)}^2}}}$

  3. $c\left( x \right) = \;\frac{{{x^2}\; - 9}}{{{x^2}\; + 1}}$

    $f ={x^2} - 9$

    $f' =2x$

    $g ={x^2} + 1$

    $g' = 2x$

    $c'(x) = \frac{{2x({x^2} + 1) - 2x({x^2} - 9)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

    $c'(x) = \frac{{2{x^3} + 2x - 2{x^3} + 18x}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

    $c'(x) = \frac{{20x}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

  4. $h\left( x \right) = \;\frac{{1 + {e^x}}}{{1 - {e^x}}}$

    $f =1 + {e^x}$

    $f' = {e^x}$

    $g = 1 - {e^x}$

    $g' = - {e^x}$

    $h'(x) = \frac{{{e^x}(1 - {e^x}) - \left( { - {e^x}} \right)(1 + {e^x})}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{{e^x}(1 - {e^x}) + {e^x}(1 + {e^x})}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{{e^x} - {e^{2x}} + {e^x} + {e^{2x}}}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{2{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

  5. $j\left( x \right) = \;\frac{{3x}}{{4 + \ln x}}$

    $f =3x$

    $f' = 3$

    $g =4 + \ln x$

    $g' = \frac{1}{x}$

    $j'(x) = \frac{{3(4 + \ln x) - \frac{1}{x}(3x)}}{{{{\left( {4 + \ln x} \right)}^2}}}$

    $j'(x) = \frac{{12 + 3\ln x - 3}}{{{{\left( {4 + \ln x} \right)}^2}}}$

    $j'(x) = \frac{{9 + 3\ln x}}{{{{\left( {4 + \ln x} \right)}^2}}}$

  6. Find $\frac{{dy}}{{dw}}$ for $y = \;\frac{{2{w^4}\; - \;{w^3}}}{{6w - 1}}$

    $f =2{w^4} - {w^3}$

    $f' = 8{w^3} - 3{w^2}$

    $g = 6w - 1$

    $g' = 6$

    $\frac{{dy}}{{dw}} = \frac{{(8{w^3} - 3{w^2})(6w - 1) - 6(2{w^4} - {w^3})}}{{{{\left( {6w - 1} \right)}^2}}}$

    $\frac{{dy}}{{dw}} = \frac{{48{w^4} - 8{w^3} - 18{w^3} + 3{w^2} - 12{w^4} + 6{w^3}}}{{{{\left( {6w - 1} \right)}^2}}}$

    $\frac{{dy}}{{dw}} = \frac{{36{w^4} - 20{w^3} + 3{w^2}}}{{{{\left( {6w - 1} \right)}^2}}}$

  7. Explain how $f'(x)$ can be found without using the quotient rule: $f\left( x \right) = \;\frac{4}{{{x^3}}}.$

    Rewrite the quotient as a product and then use the product rule.

    $f(x) = 4{x^{ - 3}}$

    $f'(x) = - 12{x^{ - 4}}$

    $f'(x) = \frac{{ - 12}}{{{x^4}}}$

    Tangent Lines

  8. $h\left( x \right) = \;\frac{{3x - 7}}{{2x - 1}}$

    1. Find $h'\left( x \right).$

      $f =3x - 7$

      $f' = 3$

      $g = 2x - 1$

      $g' = 2$

      $h'(x) = \frac{{3(2x - 1) - 2(3x - 7)}}{{{{\left( {2x - 1} \right)}^2}}}$

      $h'(x) = \frac{{6x - 3 - 6x + 14}}{{{{\left( {2x - 1} \right)}^2}}}$

      $h'(x) = \frac{{11}}{{{{\left( {2x - 1} \right)}^2}}}$

    2. Find the equation of the line tangent to the graph of $h$ at $x\; = \;2$.

      Point $\quad h(2) = \frac{{3\cdot2 - 7}}{{2\cdot2 - 1}} = \frac{{ - 1}}{3}$

      $(2, - \frac{1}{3})$

      Slope $\quad {m_{tan}} = f'(2) = \frac{{11}}{{{{\left( {2\cdot2 - 1} \right)}^2}}} = \frac{{11}}{{{3^2}}} = \frac{{11}}{9}$

      ${m_{tan}} = \frac{{11}}{9}$

      Equation of Line: $y + \frac{1}{3} = \frac{{11}}{9}(x - 2)$

      $y + \frac{1}{3} = \frac{{11}}{9}x - \frac{{22}}{9}$

      $y = \frac{{11}}{9}x - \frac{{25}}{9}$

    3. Find the values of x where h’(x) = 0.

      $\frac{{11}}{{{{(2x - 1)}^2}}} = 0$

      $\frac{{11}}{{{{(2x - 1)}^2}}} = \frac{0}{1}$

      Cross Multiply

      $0 \ne 11$ There is no value of x where $h'(x) =0.$

    Derivatives with Radicals

  9. Find y’ for $y = \;\frac{{6\sqrt[3]{x}}}{{2{x^2}\; - 5x + 1}}.$

    $f(x)=\frac{{6{x^{1/3}}}}{{2{x^2} - 5x + 1}}$

    $f =6{x^{1/3}}$

    $f' = \frac{1}{3}\cdot 6{x^{ - 2/3}}$

    $f' = 2{x^{ - 2/3}}$

    $g = 2{x^2} - 5x + 1$


    $g' = 4x - 5$


    $y' = \frac{{2{x^{ - 2/3}}(2{x^2} - 5x + 1) - (4x - 5)(6{x^{1/3}})}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    $y' = \frac{{4{x^{4/3}} - 10{x^{1/3}} + 2{x^{ - 2/3}} - 24{x^{4/3}} + 30{x^{1/3}}}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    $y' = \frac{{ - 20{x^{4/3}} + 20{x^{1/3}} + 2{x^{ - 2/3}}}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    Multiply every term by ${{x}^{2/3}}.$

    $y' = \frac{{ - 20{x^2} + 20x + 2}}{{\sqrt[3]{{{x^2}}}{{(2{x^2} - 5x + 1)}^2}}}$

  10. Find $\frac{{dy}}{{dx}}$ for $y = \;\frac{{\;2{x^2}\; - 2x + 3\;}}{{\sqrt[4]{x}}}.$

    $f =2{x^2} - 2x + 3$

    $f' = 4x - 2$

    $g = {x^{1/4}}$

    $g' = \frac{1}{4}{x^{ - 3/4}}$

    $\frac{{dy}}{{dx}} = \frac{{(4x - 2)({x^{1/4}}) - \frac{1}{4}{x^{ - 3/4}}(2{x^2} - 2x + 3)}}{{{{\left( {{x^{1/4}}} \right)}^2}}}$

    $\frac{{dy}}{{dx}} = \frac{{4{x^{5/4}} - 2{x^{1/4}} - \frac{1}{2}{x^{5/4}} + \frac{1}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}}}{{{x^{1/2}}}}$

    $\frac{{dy}}{{dx}} = \frac{{\left( {\frac{7}{2}{x^{5/4}} - \frac{3}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}} \right)}}{{({x^{1/2}})}}$

    $\frac{{dy}}{{dx}} = \frac{{\left( {\frac{7}{2}{x^{5/4}} - \frac{3}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}} \right)\cdot 4}}{{({x^{1/2}})\cdot 4}}$

    $\frac{{dy}}{{dx}} = \frac{{14{x^{5/4}} - 6{x^{1/4}} - 3{x^{ - 3/4}}}}{{(4{x^{1/2}})}}$

    $\frac{dy}{dx}=\frac{14{{x}^{5/4}}-6{{x}^{1/4}}-\frac{3}{{{x}^{{}^{3}/{}_{4}}}}}{4{{x}^{1/2}}}$

    Multiply every term by ${{x}^{3/4}}.$

    $\frac{dy}{dx}=\frac{14{{x}^{8/4}}-6{{x}^{4/4}}-3}{(4{{x}^{1/2}}){{x}^{3/4}}}$

    $\frac{dy}{dx}=\frac{14{{x}^{2}}-6x-3}{4{{x}^{5/4}}}$

    Applications

  11. A cable company has installed a new television system in a city. The total number N (in thousands) of subscribers t months after the installation of the system is given by $N\left( t \right) = \;\frac{{178t}}{{t + 5}}.$

    1. Find $N'(t).$

      $f =178t$

      $f' = 178$

      $g = t + 5$

      $g' = 1$

      $N'(t) = \frac{{178(t + 5) - 1(178t)}}{{{{\left( {t + 5} \right)}^2}}}$

      $N'(t) = \frac{{178t + 890 - 178t}}{{{{\left( {t + 5} \right)}^2}}}$

      $N'(t) = \frac{{890}}{{{{\left( {t + 5} \right)}^2}}}$

    2. Find $N\left( {12} \right)$ and $N'\left( {12} \right)$. Write a brief interpretation of these results.

      $N(12) = \frac{{178(12)}}{{12 + 5}} = \frac{{2136}}{{17}} = 125.647$

      $N'(12) = \frac{{890}}{{{{\left( {12 + 5} \right)}^2}}} = \frac{{890}}{{{{17}^2}}} = \frac{{890}}{{289}} = 3.0796$

      At 12 months the cable company has 125,647 subscribers and that number is increasing at a rate of 3080 subscribers per month.

    3. Use the results above to estimate the total number of subscribers after 13 months.

      $N(13)\approx N(12)+N'(12)$

      125,647 + 3080 = 128,727

      Based on the number of subscribers after 12 months, there will be approximately 128,727 subscribers after 13 months.

  12. According to economic theory, the supply x of a quantity in a free market increases as the price p increases. Suppose the number x of baseball gloves a retail chain is willing to sell per week at a price of \$p is given by $$x = \;\frac{{100p}}{{0.1p + 1}} \quad\ 30.00 \le p \le 190.00.$$

    1. Find $\frac{{dx}}{{dp}}.$

      $f =100p$

      $f' = 100$

      $g =0.1p + 1$

      $g' = 0.1$

      $\frac{{dx}}{{dp}} = \frac{{100(0.1p + 1) - 0.1(100p)}}{{{{\left( {0.1p + 1} \right)}^2}}}$

      $\frac{{dx}}{{dp}} = \frac{{10p + 100 - 10p}}{{{{\left( {0.1p + 1} \right)}^2}}}$

      $\frac{{dx}}{{dp}} = \frac{{100}}{{{{\left( {0.1p + 1} \right)}^2}}}$

    2. Find the supply and the instantaneous rate of change (IRC) of supply with respect to price when the price is \$40. Write a brief verbal interpretation of these results.

      Supply when $p=\$40\quad\quad\quad x(40) = \frac{{100(40)}}{{0.1(40) + 1}} = \frac{{4000}}{5} = 800\;gloves$

      IRC when $p=\$40\quad\quad\quad \frac{{dx}}{{dp}}(40)=\frac{{100}}{{{{\left({0.1\cdot40+1}\right)}^2}}} = \frac{{100}}{{25}} = 4\;gloves$

      When the price of the baseball gloves is $40, the retail chain can sell 800 gloves per week, and the number of gloves sold is increasing at a rate of 4 gloves per week.

    3. Use the results above to estimate the supply if the price is increased to \$41.

      800+4=804

      If the price increased to $41, 804 gloves would be sold each week.

2.4 Derivatives of Quotients

Practice

Find the derivative of each of the following.

  1. $h(x) = \frac{{6x + 5}}{{3x - 8}}$

    $f = 6x + 5$

    $f' = 6$

    $g = 3x - 8$

    $g' = 3$

    $h'(x) = \frac{{6(3x - 8) - 3(6x + 5)}}{{{{\left( {3x - 8} \right)}^2}}}$

    $h'(x) = \frac{{18x - 48 - 18x - 15}}{{{{\left( {3x - 8} \right)}^2}}}$

    $h'(x) = \frac{{ - 63}}{{{{\left( {3x - 8} \right)}^2}}}$

  2. $y = \frac{{{x^3} - 5x}}{{4{x^2}}}$

    $f = {x^3} - 5x$

    $f' = 3{x^2} - 5$

    $g = 4{x^2}$

    $g' = 8x$

    $y' = \frac{{(3{x^2} - 5)(4{x^2}) - 8x({x^3} - 5x)}}{{{{\left( {4{x^2}} \right)}^2}}}$

    $y' = \frac{{12{x^4} - 20{x^2} - 8{x^4} + 40{x^2}}}{{{{\left( {4{x^2}} \right)}^2}}}$

    $y' = \frac{{4{x^4} + 20{x^2}}}{{16{x^4}}}$

    $y' = \frac{{4{x^2}({x^2} + 5)}}{{16{x^4}}}$

    $y' = \frac{{{x^2} + 5}}{{4{x^2}}}$

  3. $r(x) = \frac{2e^x}{x-7}$

    $f = 2e^x$

    $f' = 2e^x$

    $g = x-7$

    $g' = 1$

    $r'(x) = \frac{2e^x(x-7)-2e^x\left(1\right)}{\left(x-7\right)^2}$

    $r'(x) = \frac{2xe^x-14e^x-2e^x}{\left(x-7\right)^2}$

    $r'(x) = \frac{2xe^x-16e^x}{\left(x-7\right)^2}$

  4. $h(x) = \frac{x+7}{-3e^x}$

    $f = x+7$

    $f' = 1$

    $g = -3e^x$

    $g' = -3e^x$

    $h'(x) = \frac{1(-3e^x)-\left(-3e^x\right)(x+7)}{\left(-3e^x\right)^2}$

    $h'(x) = \frac{-3e^x\left[1-(x+7)\right]}{\left(-3e^x\right)^2}$

    $h'(x) = \frac{\left[1-(x+7)\right]}{-3e^x}$

    $h'(x) = \frac{1-x-7}{-3e^x}$

    $h'(x) = \frac{-x-6}{-3e^x}$

    $h'(x) = \frac{x+6}{3e^x}$

  5. $p(x) = \frac{\sqrt x}{2x-4}$

    $f = x^\frac12$

    $f' = \frac12x^{-\frac12}$

    $g = 2x-4$

    $g' = 2$

    $p'(x) = \frac{\displaystyle\frac12x^\frac12\left(2x-4\right)-2\left(x^\frac12\right)}{\left(2x-4\right)^2}$

    $p'(x) = \frac{\displaystyle x^\frac12-2x^\frac{-1}2-2x^\frac12}{\left(2x-4\right)^2}$

    $p'(x) =\frac{\displaystyle-1x^\frac12-2x^\frac{-1}2}{\left(2x-4\right)^2}$

    Multiply all terms by $x^\frac12.$

    $p'(x) = \frac{\displaystyle-x-2}{\sqrt x\left(2x-4\right)^2}$

  6. $r(x) = \frac{\sqrt[3]x}{3x-9}$

    $f = x^\frac13$

    $f' = \frac13x^{-\frac23}$

    $g = 3x-9$

    $g' = 3$

    $r'(x) = \frac{\displaystyle\frac13x^\frac{-2}3\left(3x-9\right)-3(x^\frac13)}{\left(3x-9\right){\displaystyle{}^2}}$

    $r'(x) = \frac{\displaystyle1x^\frac13-3x^\frac{-2}3-3x^\frac13}{\left(3x-9\right){\displaystyle{}^2}}$

    $r'(x) =\frac{\displaystyle-2x^\frac13-3x^\frac{-2}3}{\left(3x-9\right){\displaystyle{}^2}}$

    Multiply all terms by $x^\frac23.$

    $r'(x) =\frac{\displaystyle-2x-3}{\sqrt[3]{x^2}\left(3x-9\right){\displaystyle{}^2}}$

  7. $w(x) = \frac{\ln x}{x^3}$

    $f =\ln x$

    $f' = \frac1x$

    $g = x^3$

    $g' = 3x^2$

    $w'(x) = \frac{\displaystyle\frac1x\left(x^3\right)-3x^2\ln x}{\left(x^3\right)^2}$

    $w'(x) = \frac{x^2-3x^2\ln x}{x^6}$

    $w'(x) =\frac{1-3\ln x}{x^3}$

  8. Determine the slope of the tangent line to the curve $R(x) = \frac{{{x^2} - 2x - 8}}{{{x^2} - 9}}$ at the point where $x = 0$.

    $f = {x^2} - 2x - 8$

    $f' = 2x - 2$

    $g = {x^2} - 9$

    $g' = 2x$

    $R'(x) = \frac{{(2x - 2)({x^2} - 9) - 2x({x^2} - 2x - 8)}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    $R'(x) = \frac{{2{x^3} - 18x - 2{x^2} + 18 - 2{x^3} + 4{x^2} + 16x}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    $R'(x) = \frac{{2{x^2} - 2x + 18}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    ${m_{\tan }}=R'(0) = \frac{{2{{(0)}^2} - 2(0) + 18}}{{{{\left( {{0^2} - 9} \right)}^2}}} = \frac{{18}}{{81}} = \frac{2}{9}$

    ${m_{\tan }} =\frac{2}{9}$

  9. Find the equation of the tangent line to $f(x) = \frac{{{x^2} + 3}}{{6 - x}}$ at $x = 3$.

    $f(3) = \frac{{{3^2} + 3}}{{6 - 3}} = \frac{{9 + 3}}{3} = \frac{{12}}{3} = 4$

    $(3,4)$

    $h = {x^2} + 3$

    $h' = 2x$

    $g = 6 - x$

    $g' = - 1$

    $f'(x) = \frac{{2x(6 - x) + 1({x^2} + 3)}}{{{{\left( {6 - x} \right)}^2}}}$

    $f'(x) = \frac{{12x - 2{x^2} + {x^2} + 3}}{{{{\left( {6 - x} \right)}^2}}}$

    $f'(x) = \frac{{ - 1{x^2} + 12x + 3}}{{{{\left( {6 - x} \right)}^2}}}$

    ${m_{\tan }}= f'(3) = \frac{{ - 1({3^2}) + 12(3) + 3}}{{{{\left( {6 - 3} \right)}^2}}}$

    ${m_{\tan }}= \frac{{ - 9 + 36 + 3}}{{{3^2}}} = \frac{{30}}{9} = \frac{{10}}{3}$

    $y - 4 = \frac{{10}}{3}(x - 3)$

    $y - 4 = \frac{{10}}{3}x - 10$

    $y = \frac{{10}}{3}x - 6$

  10. A music publisher expects that, over the first 24 months after the release of an album, the monthly profit (in thousands of dollars) can be modeled by $P(t) = \frac{{800 + 400t - 20{t^2}}}{{{t^2} + 20}}$

    1. Find the model for the marginal profit.

      $f = 800 + 400t - 20{t^2}$

      $f' = 400 - 40t$

      $g = {t^2} + 20$

      $g' = 2t$

      $P'(t) = \frac{{(400 - 40t)({t^2} + 20) - 2t(800 + 400t - 20{t^2})}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

      $P'(t) = \frac{{400{t^2} + 8000 - 40{t^3} - 800t - 1600t - 800{t^2} + 40{t^3}}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

      $P'(t) = \frac{{ - 400{t^2} - 2400t + 8000}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

    2. Find and interpret the marginal profit 1 month after release.

      $P'(1) = \frac{{ - 400{{(1)}^2} - 2400(1) + 8000}}{{{{\left( {{1^2} + 20} \right)}^2}}}$

      $P'(1) = \frac{{ - 400 - 2400 + 8000}}{{{{\left( {21} \right)}^2}}} = \frac{{5200}}{{441}} = 11.79$

      The profit is increasing at a rate of \$11,790 per month after the 1st month of release.

    3. Find and interpret the marginal profit 6 months after release.

      $P'(6) = \frac{{ - 400{{(6)}^2} - 2400(6) + 8000}}{{{{\left( {{6^2} + 20} \right)}^2}}}$

      $P'(6) = \frac{{ - 14400 - 14400 + 8000}}{{{{56}^2}}} = \frac{{ - 20800}}{{3136}} = - 6.63$

      The profit is decreasing at a rate of \$6630 per month after the 6th month of release.

    4. After how many months will marginal profit begin to decrease?

      $\frac{{ - 400{t^2} - 2400t + 8000}}{{{{\left( {{t^2} + 20} \right)}^2}}} = \frac{0}{1}$

      $- 400{t^2} - 2400t + 8000 = 0$

      $- 400({t^2} + 6t - 20) = 0$

      ${t^2} + 6t - 20 = 0$

      $t = \frac{{ - 6 \pm \sqrt {{6^2} - 4(1)( - 20)} }}{{2(1)}} = \frac{{ - 6 \pm \sqrt {36 + 80} }}{2} = \frac{{ - 6 \pm \sqrt {116} }}{2} = \frac{{ - 6 \pm 10.77}}{2}$

      The zeros of the equation are $t=2.385$ and $t=-8.385.$ Note: $t=-8.385$ is not in the domain.

      The profit begins to decrease 2.385 months after the release of the album.

  11. Comcast has determined a model that predicts the total number of subscribers it will have when it expands to a new geographic region. The total number of subscribers $S$ (in thousands) $t$ months after the expansion is given by $S(t) = \frac{{150t}}{{t + 6}}$

    1. Find $S'(t)$.

      $S'(t) = \frac{{150(t + 6) - 1(150t)}}{{{{\left( {t + 6} \right)}^2}}}$

      $S'(t) = \frac{{150t + 900 - 150t}}{{{{\left( {t + 6} \right)}^2}}}$

      $S'(t) = \frac{{900}}{{{{\left( {t + 6} \right)}^2}}}$

    2. Find $S(15)$ and $S'(15)$and interpret the results.

      $S(15) = \frac{{150(15)}}{{15 + 6}} = 107.14$

      $S'(15) = \frac{{900}}{{{{\left( {15 + 6} \right)}^2}}} = 2.04$

      The total number of subscribers after 15 months is 107,140.The number of subscribers is increasing at a rate of about 2040 per month after the 15th month.

    3. Use the results from part b to estimate the total number of subscribers after 16 months.

      $S(16) \approx 107.14 + 2.04 \approx 109.18$

      $S(16)\approx S(15)+S'(15)$

      At 16 months, the number of subscribers will be approximately 109,180.

  12. The concentration of a particular drug in the bloodstream can be modeled by $C(t) = \frac{{20t}}{{{t^2} + t + 5}}$, where $C(t)$ is measured in milligrams per cubic millimeter and $t$ is time in hours. What change in concentration can be expected between the 5th and 6th hour after the drug is administered?

    $f = 20t$

    $f' = 20$

    $g = {t^2} + t + 5$

    $g' = 2t +1$

    $C'(t) = \frac{{20({t^2} + t + 5) - 20t(2t + 1)}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(t) = \frac{{20{t^2} + 20t + 100 - 40{t^2} - 20t}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(t) = \frac{{ - 20{t^2} + 100}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(5) = \frac{{ - 20{{(5)}^2} + 100}}{{{{\left( {{5^2} + 5 + 5} \right)}^2}}}$

    $C'(5) = - 0.33$

    The concentration of the drug is decreasing by .33 mg/ml$^3$ from the 5th to 6th hours.


Additional Resources