2.5 The Chain Rule
Pre-Class 2.5A:
- Complete 2.4 homework assignment: check and correct.
- Take notes on the videos and readings (use the space below).
- Work and check problems #1-4 in the 2.5 NOTES section.
- Complete the 2.5A Pre-Class Quiz
Pre-Class 2.5B:
- Complete 1.5A Homework assignment: check and correct.
- Take notes on the videos and readings (use the space below).
- 1.5B Work and check problems #13 in the 2.5 NOTES section.
- Complete 2.5B Pre-Class Quiz
Introduction
-
The gas tank of a parked pickup truck develops a leak. The amount of gas, in liters, remaining in the tank after t hours is represented by the function $V(t) = 90{\left( {1 - \frac{t}{{18}}} \right)^2}\quad 0 \le t \le 18$. How fast is the gas leaking from the tank after 12 hours?
$f(x) = 90(1-\frac{t}{9}+\frac{t^2}{324})$
$f(x) = 90 - 10t + \frac{5}{{18}}{t^2}$
$f'(x) = - 10 + \frac{5}{9}t$
$f'(12) = - 3.33$
The gas is leaking from the tank at a rate of 3.33 liters per hour after 12 hours.
-
Andrew and David are training to run a marathon. They both go on a run on Sunday mornings at precisely 7 A.M. Andrew’s house is 22 km south of David’s. One Sunday morning, Andrew leaves his house and runs west at 7 km/hr. The distance between the two runners can be modeled by the function $$s(t) = \sqrt {130{t^2} - 396t + 484},$$ where s is in kilometers and t is in hours. Determine the rate at which the distance between the two runners is changing.
$s(t)={{\left( 130{{t}^{2}}-396t+484 \right)}^{{}^{1}/{}_{2}}}$
$s'(t)=\frac{1}{2}{{\left( 130{{t}^{2}}-396t+484 \right)}^{{}^{-1}/{}_{2}}}(260t-396)$
$s'(t)=\frac{260t-396}{2\sqrt{130{{t}^{2}}-396t+484}}$
Notes
General Derivative Rules Using the Chain Rule
$ \frac d{dx}\left[f(x)\right]^n=n\left[f(x)\right]^{n-1}\cdot f'(x)$
$\frac d{dx}\ln\left[f(x)\right]=\frac1{f(x)}\cdot f'(x)$
$\frac d{dx}e^{f(x)}=e^{f(x)}\cdot f'\left(x\right)$
Fill in the blank with an expression that will make the indicated equation valid. Then simplify.
-
$\frac{d}{{dx}}\;{\left( {3 - 7x} \right)^6} = 6{\left( {3 - 7x} \right)^5}\;$______ $( - 7)$
-
$\frac{d}{{dx}}\;{e^{5x - 3}} = \;{e^{5x - 3}}$_______ $(5)$
-
$\frac{d}{{dx\;}}\;ln\left( {{x^2} - {x^4}} \right) = \;\frac{1}{{{x^2} - {x^4}}}$______ $(2x - 4{x^3})$
Find $f'\left( x \right)$ and simplify.
-
$f\left( x \right) = \;{\left( {8{x^2}\; - 7} \right)^5}$
$f'(x) = 5{\left( {8{x^2} - 7} \right)^4}(16x)$
$f'(x) = 80x{\left( {8{x^2} - 7} \right)^4}$
-
$f\left( x \right) = \;{e^{3{x^2}\; + 2x + 5}}$
$f'(x) = {e^{3{x^2} + 2x + 5}}(6x + 2)$
-
$f\left( x \right) = 2\ln \left( {9{x^2}\; - 5x + 21} \right)$
$f'(x) = \frac{2}{{9{x^2} - 5x + 21}}\cdot(18x - 5)$
$f'(x) = \frac{{36x - 10}}{{9{x^2} - 5x + 21}}$
-
$f\left( x \right) = \;{\left( {4x - 5\ln x} \right)^7}$
$f'(x) = 7{\left( {4x - 5\ln x} \right)^6}(4 - \frac{5}{x})$
$f'(x) = 7(4 - \frac{5}{x}){\left( {4x - 5\ln x} \right)^6}$
Horizontal Tangents
Finding the Equation of the Tangent Line, at $x=a$:- Find the y value by calculating $f(a)$: $\left(a, f(a)\right).$
- Find the slope of the tangent line by calculating $f'(a)$: ${m_{tan}}=f'(a).$
- Equation of the tangent line: $y-f(a)=f'(a)\left(x-a\right).$
Finding the Value(s) where the Tangent Line is Horizontal:- Set $f'(x)=0.$
- Solve for $x.$
- Verify that each $x$ is in the domain of $f(x)$ and $f'(x).$
Find $f'(x)$ and simplify. Then find the equation of the tangent line to the graph of $f(x)$ at the given value of $x$. Find the values of $x$ where the tangent line is horizontal.
-
$f\left( x \right) = \;{\left( {3x + 13} \right)^{1/2}}\quad \quad$ at $x = 4$
$f'(x) = \frac{1}{2}{\left( {3x + 13} \right)^{ - 1/2}}(3)$
$f'(x) = \frac{3}{{2\sqrt {3x + 13} }}$
Slope: $\quad {m_{tan}} = f'(4) = \frac{3}{{2\sqrt {3\cdot4 + 13} }}$
$\quad\quad{m_{tan}} = \frac{3}{{2\sqrt {12 + 13} }}$
$\quad\quad{m_{tan}} = \frac{3}{{2\sqrt {25} }}$
$\quad\quad{m_{tan}} = \frac{3}{{2\cdot5}} = \frac{3}{{10}}$
Point: $f(4) = {\left( {3\cdot 4 + 13} \right)^{1/2}}$
$\quad\quad f(4) = {\left( {12 + 13} \right)^{1/2}}$
$\quad\quad f(4) = \sqrt {25} = 5$
$\quad\quad (4,5)$
$y - 5 = \frac{3}{{10}}(x - 4)$
$y - 5 = \frac{3}{{10}}x - \frac{{12}}{{10}}$
$y = \frac{3}{{10}}x - \frac{{6}}{{5}} + 5$
$y = \frac{3}{{10}}x + \frac{{19}}{5}$
Horizontal Tangent
Horizontal Tangents are found where $f'(x) = 0.$
$\frac{3}{{2\sqrt {3x + 13} }} = 0$
$\frac{3}{{2\sqrt {3x + 13} }} = \frac{0}{1}$
Cross multiply.
$3 \ne 0$
No Horizontal Tangents: There are no values of x where $f'(x) = 0.$
-
$f\left( x \right) = \;3{e^{2{x^2}\; + 5x - 4}}\quad \quad x = 0$
$f'(x) = 3{e^{2{x^2} + 5x - 4}}(4x + 5)$
$f'(x) = 3(4x + 5){e^{2{x^2} + 5x - 4}}$
Slope: $\quad {m_{tan}} = f'(0) = 3(4\cdot0 + 5){e^{2\cdot0 + 5\cdot0 - 4}}$
$\quad{m_{tan}} = 3(5){e^{ - 4}}=15{e^{ - 4}}$
Point: $\quad f(0)=3{e^{2\cdot0 + 5\cdot0 - 4}} = 3{e^{ - 4}}$
$\quad(0,3{e^{ - 4}})$
$y - 3{e^{ - 4}} = 15{e^{ - 4}}(x - 0)$
$y - 3{e^{ - 4}} = 15{e^{ - 4}}x$
$y = 15{e^{ - 4}}x + 3{e^{ - 4}}$
$y = \frac{{15x}}{{{e^4}}} + \frac{3}{{{e^4}}}$
Horizontal Tangents:
Horizontal Tangents are found where $f'(x) = 0.$
$3(4x + 5){e^{2{x^2} + 5x - 4}} = 0$
Set each factor equal to zero.
$3 = 0$
$3 \ne 0$
no solution
$4x + 5 = 0$
$4x = - 5$
$x = - \frac{5}{4}$
${e^{2{x^2} + 5x - 4}} = 0$
$\ln {e^{2{x^2} + 5x - 4}} = \ln 0$
$ln (0)$ is undefined.
There is only one horizontal tangent. The horizontal tangent is at $x=-\frac{5}{4}.$
-
$f\left( x \right) = \ln \left( {1 - {x^2} + 2{x^4}} \right)$ at $x = 1$
$f'(x) = \frac{1}{{1 - {x^2} + 2{x^4}}}\cdot( - 2x + 8{x^3})$
$f'(x) = \frac{{ - 2x + 8{x^3}}}{{1 - {x^2} + 2{x^4}}}$
Slope: $\quad {m_{tan}} = f'(1) = \frac{{ - 2(1) + 8{{(1)}^3}}}{{1 - {{(1)}^2} + 2{{(1)}^4}}}$
$\quad{m_{tan}} = \frac{{ - 2 + 8}}{{1 - 1 + 2}} = \frac{6}{2} = 3$
$\quad{m_{tan}} = 3$
Point: $\quad f(1)=\ln(1 - {1^2} + 2{\left( 1 \right)^4}) =\ln (1 - 1 + 2)= \ln 2$
$\quad(1,\ln 2)$
$y - \ln 2 = 3(x - 1)$
$y - \ln 2 = 3x - 3$
$y = 3x - 3 + \ln 2$
Horizontal Tangent
Horizontal Tangents are found where $f'(x) = 0.$
$\frac{{ - 2x + 8{x^3}}}{{1 - {x^2} + 2{x^4}}} = 0$
$\frac{{ - 2x + 8{x^3}}}{{1 - {x^2} + 2{x^4}}} = \frac{0}{1}$
Cross multiply.
$- 2x + 8{x^3} = 0$
$- 2x(1 + 4{x^2}) = 0$
Set each factor equal to zero.
$-2x=0$
$x=0$
$1 - 4{x^2} = 0$
$x=\pm \frac{1}{2}$
Horizontal Tangents at $x=0\;\;$ and $\;\;x=\pm \frac{1}{2}$
Find the indicated derivative and simplify.
-
$\frac{d}{{dt}}\;3{\left( {2{t^4}\; + {t^2}\;} \right)^{ - 5}}$
$\frac{d}{{dt}} = - 15{\left( {2{t^4} + {t^2}} \right)^{ - 6}}(8{t^3} + 2t)$
$ \frac{d}{{dt}} =\frac{{ - 120{t^3} - 30t}}{{{{\left( {2{t^4} + {t^2}} \right)}^6}}}$
-
$\frac{{dh}}{{dw\;}}\quad $ if $\quad h\left( w \right) = \;\sqrt[5]{{8w - 1}}$
$ h(w)= {\left( {8w - 1} \right)^{1/5}}$
$\frac{{dh}}{{dw}} = \frac{1}{5}{\left( {8w - 1} \right)^{ - 4/5}}(8) $
$ \frac{{dh}}{{dw}} =\frac{8}{{5\,\,\sqrt[5]{{{{\left( {8w - 1} \right)}^4}}}}}$
-
$h'\left( x \right)\quad $ if $\quad h\left( x \right) = \;\frac{{{e^{4x}}}}{{{x^3}\; + 9x}}$
$f = {e^{4x}}$
$f' = 4{e^{4x}}$
$g = {x^3} + 9x$
$g' = 3{x^2} + 9$
$h'(x) = \frac{{4{e^{4x}}({x^3} + 9x) - {e^{4x}}(3{x^2} + 9)}}{{{{\left( {{x^3} + 9x} \right)}^2}}}$
$h'(x) = \frac{{{e^{4x}}(4{x^3} + 36x - 3{x^2} - 9)}}{{{{\left( {{x^3} + 9x} \right)}^2}}}$
$h'(x) = \frac{{{e^{4x}}(4{x^3} - 3{x^2} + 36x - 9)}}{{{{\left( {{x^3} + 9x} \right)}^2}}}$
-
$\frac{d}{{dx}}\;\left[ {{x^5}\;\;ln\left( {3 + {x^5}\;} \right)} \right]$
$f = {x^5}$
$f' = 5{x^4}$
$g = \ln (3 + {x^5})$
$g' =\frac{1}{{3 + {x^5}}}\cdot5{x^4} = \frac{{5{x^4}}}{{3 + {x^5}}}$
$\frac{d}{{dx}} = 5{x^4}(\ln (3 + {x^5})) + \frac{{5{x^4}}}{{3 + {x^5}}}({x^5})$
$\frac{d}{{dx}} = 5{x^4}\ln (3 + {x^5}) + \frac{{5{x^9}}}{{3 + {x^5}}}$
-
$G'\left( t \right)$ if $G\left( t \right) = \;{\left( {t - {e^{9t}}} \right)^2}$
$G'(t) = 2{\left( {t - {e^{9t}}} \right)^1}(1 - 9{e^{9t}})$
$ G'(t) = 2(t - {e^{9t}})(1 - 9{e^{9t}})$
-
$y'\quad $ if $\quad y = \;{\left[ {ln\left( {{x^2}\; + 7} \right)} \right]^{4/5}}$
$y' = \frac{4}{5}{\left[ {\ln ({x^2} + 7)} \right]^{ - 1/5}}(\frac{1}{{{x^2} + 7}})(2x)$
$y' = \frac{{8x}}{{5({x^2} + 7){{\left( {\ln ({x^2} + 7)} \right)}^{1/5}}}}$
-
$\frac{d}{{dw}}\;\frac{1}{{{{\left( {{w^2}\; - 5} \right)}^3}}}$
$\frac{d}{{dw}} = \left(w^2-5\right)^{-3} $
$\frac{d}{{dw}} = - 3{\left( {{w^2} - 5} \right)^{ - 4}}(2w)$
$\frac{d}{{dw}} = \frac{{ - 6w}}{{{{\left( {{w^2} - 5} \right)}^4}}}$
Horizontal Tangents
Find $f'(x)$ and simplify. Then find the equation of the tangent line to the graph of $f(x)$ at the given value of $x$. Find the values of $x$ where the tangent line is horizontal.
-
$f\left( x \right) = {x^2}\;{\left( {3 - 2x} \right)^4}\quad\quad x = 1$
Point: $\quad f(1) = {1^2}{\left( {3 - 2\cdot 1} \right)^4}= {1^2}{\left( 1 \right)^4} = 1$
$(1,1)$
$h = {x^2}$
$h' = 2x$
$g = {\left( {3 - 2x} \right)^4}$
$g' = 4{\left( {3 - 2x} \right)^3}( - 2)=- 8{\left( {3 - 2x} \right)^3}$
$f'(x) = 2x{\left( {3 - 2x} \right)^4} + x{}^2( - 8{\left( {3 - 2x} \right)^3})$
$f'(x) = {\left( {3 - 2x} \right)^3}\left[ {2x(3 - 2x) - 8{x^2}} \right]$
$f'(x) = {\left( {3 - 2x} \right)^3}\left[ {6x - 4{x^2} - 8{x^2}} \right]$
$f'(x) = {\left( {3 - 2x} \right)^3}( - 12{x^2} + 6x)$
Slope: $\quad {m_{tan}} = f'(1) = {\left( {3 - 2\cdot1} \right)^3}( - 12\cdot{1^2} + 6\cdot1)$
${m_{tan}} = ({1^3})( - 12 + 6) = 1( - 6)=-6$
${m_{tan}} = - 6$
$y - 1 = - 6(x - 1)$
$y - 1 = - 6x + 6$
$y = - 6x + 7$
Horizontal Tangent
${\left( {3 - 2x} \right)^3}( - 12{x^2} + 6x) = 0$
${\left( {3 - 2x} \right)^3}(6x)( - 2x + 1) = 0$
$3-2x = 0$
$x = \frac{3}{2}$
$6x = 0$
$x=0$
$-2x+1= 0$
$x = \frac{1}{2}$
Horizontal Tangents at $x=\frac{3}{2}\;\;$ and $\;x = 0\;$ and $\;x=\frac{1}{2}.$
-
$f\left( x \right) = \;\frac{{{x^4}}}{{{{\left( {2x - 5} \right)}^2}}}\quad \quad \quad x = 2$
Point: $\quad f(2) = \frac{{{2^4}}}{{{{\left( {2\cdot2 - 5} \right)}^2}}} = \frac{{16}}{{{{\left( { - 1} \right)}^2}}} = 16$
$(2,16)$
$h = {x^4}$
$h' = 4{x^3}$
$g ={\left( {2x - 5} \right)^2}$
$g' =2{\left( {2x - 5} \right)^1}(2)=4(2x - 5)$
$f'(x) = \frac{{4{x^3}{{\left( {2x - 5} \right)}^2} - {x^4}\cdot{4(2x - 5)}}}{{{{\left[ {{{\left( {2x - 5} \right)}^2}} \right]}^2}}}$
$f'(x) = \frac{{4{x^3}{{\left( {2x - 5} \right)}^2} - 4{x^4}(2x - 5)}}{{{{\left( {2x - 5} \right)}^4}}}$
$f'(x) = \frac{(2x-5)[{4x^3}(2x-5) - 4{x^4}]}{(2x - 5)^4}$
$f'(x) = \frac{{4{x^3}(2x - 5) - 4{x^4}}}{{{{\left( {2x - 5} \right)}^3}}}$
$f'(x) = \frac{{8{x^4} - 20{x^3} - 4{x^4}}}{{{{\left( {2x - 5} \right)}^3}}}$
$f'(x) = \frac{{4{x^4} - 20{x^3}}}{{{{\left( {2x - 5} \right)}^3}}}$
Slope: $\quad {m_{tan}} = f'(2) = \frac{{4{{(2)}^4} - 20{{(2)}^3}}}{{{{\left( {2\cdot2 - 5} \right)}^3}}}$
${m_{tan}} = \frac{{64 - 160}}{{{{\left( { - 1} \right)}^3}}} = \frac{{ - 96}}{{ - 1}}$
${m_{tan}} = 96$
$y - 16 = 96(x - 2)$
$y - 16 = 96x - 192$
$y = 96x - 176$
Horizontal Tangent
$\frac{{4{x^4} - 20{x^3}}}{{{{\left( {2x - 5} \right)}^3}}} = \frac{0}{1}$
$4{x^4} - 20{x^3} = 0$
$4{x^3}(x - 5) = 0$
Set each factor equal to zero.
$4{x^3} = 0$
$x = 0$
$x - 5 = 0$
$ x = 5$
Horizontal Tangents at $x=0\;\;$ and $\;x = 5.$
-
$f\left( x \right)={{e}^{\sqrt{x}}}\quad\quad$ when $x=1$
Point: $\quad f(1) = {e^{\sqrt 1 }} = {e^1} = e$
$(1,e)$
$f'(x)={e^{{x^{1/2}}}}$
$f'(x) = {e^{{x^{1/2}}}}\cdot\frac{1}{2}{x^{ - 1/2}}$
$f'(x) = {e^{\sqrt x }}\cdot\frac{1}{{2\sqrt x }}$
$f'(x) = \frac{{{e^{\sqrt x }}}}{{2\sqrt x }}$
Slope: $\quad {m_{tan}} = f'(1) = \frac{{{e^{\sqrt 1 }}}}{{2\sqrt 1 }} $
${m_{tan}}= \frac{e}{2}$
$y - e = \frac{e}{2}(x - 1)$
$y - e = \frac{e}{2}x - \frac{e}{2}$
$y = \frac{e}{2}x - \frac{e}{2} + e$
$y = \frac{e}{2}x + \frac{e}{2}$
Horizontal tangent
$\frac{{{e^{\sqrt x }}}}{{2\sqrt x }} = \frac{0}{1}$
${e^{\sqrt x }} \ne 0$
There are no horizontal tangents.
-
$f\left( x \right)=~\sqrt{{{x}^{2}}~+4x+5}$ at $x = 0$
$f(x)=(x^2+4x+5)^{ 1/2}$
Point: $\quad f(0) = \sqrt {{0^2} + 4\cdot0 + 5} = \sqrt 5$
$(0,\sqrt 5 )$
$f'(x) = \frac{1}{2}{\left( {{x^2} + 4x + 5} \right)^{ - 1/2}}(2x + 4)$
$f'(x) = \frac{{2x + 4}}{{2\sqrt {{x^2} + 4x + 5} }}$
$f'(x) = \frac{{2(x + 2)}}{{2\sqrt {{x^2} + 4x + 5} }} = \frac{{x + 2}}{{\sqrt {{x^2} + 4x + 5} }}$
Slope: $\quad {m_{tan}}= f'(0) = \frac{{0 + 2}}{{\sqrt {0 + 0 + 5} }} =$
$ {m_{tan}}=\frac{2}{{\sqrt 5 }}$
$y - \sqrt 5 = \frac{2}{{\sqrt 5 }}(x - 0)$
$y - \sqrt 5 = \frac{{2x}}{{\sqrt 5 }}$
$y = \frac{{2x}}{{\sqrt 5 }} + \sqrt 5$
Horizontal tangent
$\frac{{x + 2}}{{\sqrt {{x^2} + 4x + 5} }} = \frac{0}{1}$
$x + 2 = 0$
One horizontal tangent at $\; x = - 2$
Applications
-
COST FUNCTION: The total cost (in hundreds of dollars) of producing x pairs of sandals per week is: $C\left( x \right) = 6 + \sqrt {3x + 25}$ when $0\; \le x\; \le 30.$
- Find $C'(x).$
$C(x)=6+{{\left( 3x+25 \right)}^{{1}/{2}\;}}$
$C'(x)=0+\frac{1}{2}{{\left( 3x+25 \right)}^{-1/2}}(3)$
$C'(x)=\frac{3}{2\sqrt{3x+25}}$
- Find $C'\left( {17} \right)$ and $C'\left( {26} \right)$. Interpret the results.
$C'(17) = \frac{3}{{2\sqrt {3\cdot17 + 25} }} = .172$
$C'(26) = \frac{3}{{\sqrt {3\cdot26 + 25} }} = .148$
At production level of 17 pairs per week, marginal cost is increasing by \$17.20 per pair.
At production level of 26 pairs per week, marginal cost is increasing by \$14.80 per pair.
- Find $C'(x).$
-
PRICE DEMAND EQUATION: The number of large pumpkin spice drinks $(x)$ people are willing to buy per week from a local coffee shop at a price of p (in dollars) is given by:
$$x = 1000 - 60{(p + 25)^{1/2}}$$ when $3.50\; \le p\; \le 6.25.$
- Find $\frac{dx}{dp}.$
$x=1000-60{{\left( p+25 \right)}^{1/2}}$
$\frac{dx}{dp}=0-60(\frac{1}{2}{{\left( p+25 \right)}^{-1/2}})(1)$
$\frac{dx}{dp}=\frac{-30}{\sqrt{p+25}}$
- Find the demand and the instantaneous rate of change of demand with respect to price when the price is \$4.50. Write a brief interpretation of these results.
$x = 1000 - 60\sqrt {4.50 + 25} = 674.12$
$\frac{{dx}}{{dp}} = \frac{{ - 30}}{{\sqrt {4.50 + 25} }} = - 5.52$
At \$4.50 the demand is approximately 674 drinks per week. The demand is decreasing by approximately 5 drinks per week.
- Find $\frac{dx}{dp}.$
-
BIOLOGY: A yeast culture at room temperature (68°F) is placed in a refrigerator set at a constant temperature of 38°F. After t hours, the temperature, T, of the culture is given approximately by
$T = 25{e^{ - 0.62t}} + 38$ $\quad 0\leq t\leq4.$
What is the rate of change of temperature of the culture at the end of 1 hour? At the end of 4 hours?
$T' = 25{e^{ - 0.62t}}( - 0.62)$
$T' = - 15.5{e^{ - 0.62t}}$
$T'(1) = 15.5{e^{ - 0.62(1)}} = - {8.338^ \circ }\;per\;hour$
At the end of one hour, the temperature of the culture is decreasing at a rate of 8.338 degrees per hour.
$T'(4) = - 15.5{e^{( - 0.62(4))}} = - {1.298^ \circ }\;per\;hour$
At the end of five hours, the temperature of the culture is decreasing at at rate of 1.298 degrees per hour.