MATH 1830

Unit 3 Applications of Derivatives

3.7 Optimization in Packaging: Cans and Other Right Cylinders

Pre-Class:

Write a mathematical function for each of the following and then find the requested information.

Be sure to include a properly labeled diagram (if applicable) and variable statements. State the restrictions on the independent variable.

  1. A cylindrical soup can has a volume of 355 $cm^3.$ Find the dimensions (radius and height) that minimize the surface area of the can.

    $ V=355$ $c{{m}^{3}} $

    $ V=355=\pi {{r}^{2}}h $

    $ h=\frac{355}{\pi {{r}^{2}}} $

    $ SA=2\pi {{r}^{2}}+2\pi rh$

    $ SA=2\pi {{r}^{2}}+2\pi r\left( \frac{355}{\pi {{r}^{2}}} \right)$

    $ SA=2\pi {{r}^{2}}+\frac{710}{r}$

    $ SA=2\pi {{r}^{2}}+710{{r}^{-1}}$

    $SA'=4\pi r-710r^{-2}$

    $SA'=4\pi r-\frac{710}{{{r}^{2}}}$

    Set $SA'=0.$

    $4\pi r-\frac{710}{{{r}^{2}}}=0$

    $4\pi r=\frac{710}{{{r}^{2}}}$

    $\frac{4\pi r}{1}=\frac{710}{{{r}^{2}}}$

    $4\pi {{r}^{3}}=710$

    ${{r}^{3}}=\frac{710}{4\pi }$

    ${{r}^{3}}=56.5$

    $r=3.84$

    $h=\frac{355}{\pi {{\left( 3.84 \right)}^{2}}}=7.66$

    The surface area of the can will be minimized when the radius is 3.84 cm and the height is 7.66 cm.

  2. You have 320 $cm^2$ of aluminum to make a cylinder shaped coke can. Find the dimensions that would produce a maximum volume.

    $ SA=2πr^2+2πrh$

    $ 320=2πr^2+2πrh$

    $ 320-2πr^2=2πrh$

    $ \frac{320-2πr^2}{2πr}=h$

    $ V=πr^2h$

    $ V=πr^2(\frac{320-2πr^2}{2πr})$

    $ V=r(\frac{320-2πr^2}{2})$

    $V=160r-πr^3$

    $V'=160-3πr^2$

    Set $V'=0.$

    $160-3πr^2=0$

    $160=3πr^2$

    $r^2=\frac{160}{3π}$

    $r=\sqrt{\frac{160}{3π}}$

    $r=\pm4.12$

    $h= \frac{320-2πr}{2πr}$

    $h= \frac{320-2π(4.12)}{2π(4.12)}$

    $h= 11.36$

    The volume of the can will be maximized when the radius is 4.12 cm and the height is 11.36 cm.

  3. What are the dimensions of the lightest open-top right cylindrical container that can hold a volume of 1000 $cm^3$?

    $ V=1000$ $c{{m}^{3}} $

    $ V=1000=\pi {{r}^{2}}h $

    $ h=\frac{1000}{\pi {{r}^{2}}} $

    $ SA=\pi {{r}^{2}}+2\pi rh$

    $ SA=\pi {{r}^{2}}+2\pi r(\frac{1000}{\pi {{r}^{2}}} )$

    $ SA=\pi {{r}^{2}}+\frac{2000}{r}$

    $ SA=\pi {{r}^{2}}+2000{{r}^{-1}}$

    $SA'=2\pi r-{2000}{{{r}^{-2}}}$

    $SA'=2\pi r-\frac{2000}{{{r}^{2}}}$

    Set $SA'=0.$

    $2\pi r-\frac{2000}{{{r}^{2}}}=0$

    $2\pi r=\frac{2000}{{{r}^{2}}}$

    $\frac{2\pi r}{1}=\frac{2000}{{{r}^{2}}}$

    $2\pi {{r}^{3}}=2000$

    ${{r}^{3}}=\frac{2000}{2\pi }$

    ${{r}^{3}}=\frac{1000}{\pi }$

    $\sqrt[3]{\frac{1000}{\pi}}$

    $r=6.83$

    $h=\frac{1000}{\pi (6.83)^{2}} =6.82$

    The surface area of the can will be minimized when the radius is 6.83 cm and the height is 6.82 cm.

3.7 Optimization in Packaging: Cans and Other Right Cylinders Homework

Write a mathematical function for each of the following and then find the requested information.

Be sure to include a properly labeled diagram (if applicable) and variable statements. State the restrictions on the independent variable.

  1. A cylinderical container is to be made with 3000 $cm^2$ of sheet metal. What dimensions would result in the maximum volume? Assume a lid.

    $SA=2πr^2+2πrh$

    $3000=2πr^2+2πrh$

    $ 3000-2πr^2=2πrh$

    $ \frac{3000-2\mathrm{πr}^2}{2πr}=h$

    $ V=πr^2h$

    $ V=πr^2(\frac{3000-2\mathrm{πr}^2}{2πr})$

    $ V=r(\frac{3000-2\mathrm{πr}^2}{2})$

    $ V=1500r-πr^3$

    $ V'=1500-3πr^2$

    $ 0=1500-3πr^2$

    $ 1500=3πr^2$

    $ 500=πr^2$

    $ \frac{500}π=r^2$

    $ \sqrt{\frac{500}{π}}=r$

    $ r=\pm12.62$

    $ h=\frac{3000-2π(12.62)^2}{2π(12.62)}=25.21$

    The maximum volume occurs when the radius is 12.62 cm and the height is 25.21 cm.

  2. A cylindrical can has a volume of 900 cm³. The metal costs $15.50/cm². What dimensions produce a can with minimized cost? What is the cost of making the can?

    $V=\pi {{r}^{2}}h$

    $ 900=\pi {{r}^{2}}h$

    $ h=\frac{900}{\pi {{r}^{2}}}$

    $ SA=2\pi {{r}^{2}}+2\pi rh$

    $ S(r)=2\pi {{r}^{2}}+2\pi r\left( \frac{900}{\pi {{r}^{2}}} \right)$

    $ S(r)=2\pi {{r}^{2}}+\frac{1800}{r}$

    $ S(r)=2\pi {{r}^{2}}+1800{{r}^{-1}}$

    $ S'(r)=4\pi r-\frac{1800}{{{r}^{2}}}$

    $ 0=4\pi r-\frac{1800}{{{r}^{2}}}$

    $ \frac{1800}{{{r}^{2}}}=4\pi r$

    $ 4\pi {{r}^{3}}=1800$

    $ {{r}^{3}}=\frac{1800}{4\pi }$

    $ {{r}^{3}} \approx 143.239448$

    $ r\approx 5.23\text{ cm}$

    $ h=\frac{900}{\pi {{(5.23)}^{2}}}=10.47\text{ cm}$

    Minimum Surface Area

    $ SA=2\pi {{r}^{2}}+2\pi rh$

    $ SA=2\pi {{\left( 5.23 \right)}^{2}}+2\pi \left( 5.23 \right)\left( 10.47 \right)$

    $ SA=515.92\text{ }c{{m}^{2}}$

    Cost of the can

    $ =\$15.50(SA)$

    $=\$15.50(515.92)$

    $=7996.76$

    The minimum surface area occurs when the radius is 5.23 cm and the height is 10.47 cm.

    The cost of making the can is \$7996.76.


Additional Resources