3.7 Optimization in Packaging: Cans and Other Right Cylinders
Pre-Class:
- Complete 3.6 Homework assignment: check and correct.
- Take notes on the videos and readings (use the space below).
- Complete the 3.7 Pre-Class Quiz.
Write a mathematical function for each of the following and then find the requested information.
Be sure to include a properly labeled diagram (if applicable) and variable statements. State the restrictions on the independent variable.
-
A cylindrical soup can has a volume of 355 $cm^3.$ Find the dimensions (radius and height) that minimize the surface area of the can.
$ V=355$ $c{{m}^{3}} $
$ V=355=\pi {{r}^{2}}h $
$ h=\frac{355}{\pi {{r}^{2}}} $
$ SA=2\pi {{r}^{2}}+2\pi rh$
$ SA=2\pi {{r}^{2}}+2\pi r\left( \frac{355}{\pi {{r}^{2}}} \right)$
$ SA=2\pi {{r}^{2}}+\frac{710}{r}$
$ SA=2\pi {{r}^{2}}+710{{r}^{-1}}$
$SA'=4\pi r-710r^{-2}$
$SA'=4\pi r-\frac{710}{{{r}^{2}}}$
Set $SA'=0.$
$4\pi r-\frac{710}{{{r}^{2}}}=0$
$4\pi r=\frac{710}{{{r}^{2}}}$
$\frac{4\pi r}{1}=\frac{710}{{{r}^{2}}}$
$4\pi {{r}^{3}}=710$
${{r}^{3}}=\frac{710}{4\pi }$
${{r}^{3}}=56.5$
$r=3.84$
$h=\frac{355}{\pi {{\left( 3.84 \right)}^{2}}}=7.66$
The surface area of the can will be minimized when the radius is 3.84 cm and the height is 7.66 cm.
-
You have 320 $cm^2$ of aluminum to make a cylinder shaped coke can. Find the dimensions that would produce a maximum volume.
$ SA=2πr^2+2πrh$
$ 320=2πr^2+2πrh$
$ 320-2πr^2=2πrh$
$ \frac{320-2πr^2}{2πr}=h$
$ V=πr^2h$
$ V=πr^2(\frac{320-2πr^2}{2πr})$
$ V=r(\frac{320-2πr^2}{2})$
$V=160r-πr^3$
$V'=160-3πr^2$
Set $V'=0.$
$160-3πr^2=0$
$160=3πr^2$
$r^2=\frac{160}{3π}$
$r=\sqrt{\frac{160}{3π}}$
$r=\pm4.12$
$h= \frac{320-2πr}{2πr}$
$h= \frac{320-2π(4.12)}{2π(4.12)}$
$h= 11.36$
The volume of the can will be maximized when the radius is 4.12 cm and the height is 11.36 cm.
-
What are the dimensions of the lightest open-top right cylindrical container that can hold a volume of 1000 $cm^3$?
$ V=1000$ $c{{m}^{3}} $
$ V=1000=\pi {{r}^{2}}h $
$ h=\frac{1000}{\pi {{r}^{2}}} $
$ SA=\pi {{r}^{2}}+2\pi rh$
$ SA=\pi {{r}^{2}}+2\pi r(\frac{1000}{\pi {{r}^{2}}} )$
$ SA=\pi {{r}^{2}}+\frac{2000}{r}$
$ SA=\pi {{r}^{2}}+2000{{r}^{-1}}$
$SA'=2\pi r-{2000}{{{r}^{-2}}}$
$SA'=2\pi r-\frac{2000}{{{r}^{2}}}$
Set $SA'=0.$
$2\pi r-\frac{2000}{{{r}^{2}}}=0$
$2\pi r=\frac{2000}{{{r}^{2}}}$
$\frac{2\pi r}{1}=\frac{2000}{{{r}^{2}}}$
$2\pi {{r}^{3}}=2000$
${{r}^{3}}=\frac{2000}{2\pi }$
${{r}^{3}}=\frac{1000}{\pi }$
$\sqrt[3]{\frac{1000}{\pi}}$
$r=6.83$
$h=\frac{1000}{\pi (6.83)^{2}} =6.82$
The surface area of the can will be minimized when the radius is 6.83 cm and the height is 6.82 cm.